

AFRL-IF-RS-TR-2004-138
Final Technical Report
May 2004

SCALABLE REDUNDANCY FOR
INFRASTRUCTURE SERVICES

Carnegie Mellon University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. N402

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-138 has been reviewed and is approved for publication

APPROVED: /s/
 KEVIN A. KWIAT
 Project Engineer

 FOR THE DIRECTOR: /s/
 WARREN H. DEBANY, JR.
 Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MAY 2004

3. REPORT TYPE AND DATES COVERED
FINAL Dec 02 – Dec 03

4. TITLE AND SUBTITLE

SCALABLE REDUNDANCY FOR INFRASTRUCTURE SERVICES

6. AUTHOR(S)

Michael Reiter

5. FUNDING NUMBERS
G - F30602-02-1-0139
PE - 63760E
PR - N402
TA - 0A
WU - S1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Carnegie Mellon University
Department of Electrical & Computer Engineering
Pittsburgh PA 15213

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRLIF-RS-TR-2004-138

11. SUPPLEMENTARY NOTES
DARPA Program Manager: Lee Badger/IPTO/(571) 218-4327
AFRL Project Engineer: Kevin A. Kwiat/IFGA/(315) 330-1692 Kevin.Kwiat@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Redundancy is a core tenet of robust system design, and has been employed as a defense against system failure
and/or compromise for decades. One goal of this effort is to explore directions toward achieving redundancy that scales
to large systems. Another goal of this research is to explore the application of scalable redundancy technologies to the
implementation of infrastructure services of a variety of types.

15. NUMBER OF PAGES14. SUBJECT TERMS
redundancy, scalability, Byzantine fault tolerance, information assurance

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

39

 i

TABLE OF CONTENTS

1 Introduction ... 1
1.1 Publications.. 2
1.2 Patents ... 2
1.3 Financial Summary .. 3

2 A Secure Distributed Search System.. 4
2.1 Related Work ... 5
2.2 Overview of the Mingle System.. 6
2.3 Mingle Security Architecture .. 7

2.3.1 Authorization .. 7
2.3.2 User Authentication.. 9
2.3.3 Other Vulnerabilities... 10

2.4 Mingle Implementation ... 11
2.4.1 Inverted Index .. 11
2.4.2 Mingle Server Architecture... 12

2.5 Performance Evaluation... 13
2.5.1 What is the Cost of Index and Search? 13
2.5.2 What is the Impact of Security on Performance?........... 14
2.5.3 What is the Scalability of Mingle? 15

2.6 Discussion.. 16
3 Byzantine-tolerant erasure-coded storage 17

3.1 Background .. 18
3.2 System Model .. 20
3.3 Protocol .. 21

3.3.1 Overview .. 21
3.3.2 Mechanisms... 21
3.3.3 Pseudocode ... 23

3.4 Protocol constraints.. 27
3.4.1 Write termination.. 27
3.4.2 Read classification ... 27
3.4.3 Real repairable candidates .. 27
3.4.4 Decodable repairable candidates 28
3.4.5 Constraint summary... 28

3.5 Discussion.. 28
3.5.1 Byzantine clients .. 28
3.5.2 Timestamps from Byzantine storage-nodes................... 29
3.5.3 Garbage Collection .. 29

4 Bibliography .. 30

 1

1 Introduction

This 18-month project was a “seedling” effort to generate new research directions
in scalable redundancy. Redundancy is a core tenet of robust system design,
and has been employed as a defense against system failure and/or compromise
for decades. A common example of redundancy as employed to mask the failure
of a server, for example, is to employ multiple, synchronized replicas of the
server. If a benign failure is to be tolerated, then a primary may typically serve
requests, and clients may “fail over” to a backup if the primary fails. To tolerate
Byzantine [29] server failures, a strategy is to employ multiple replicas of the
server, each initialized identically, and have clients issue queries to all of them,
typically in the same order (so that servers retain synchronized state). The client,
then, can use the responses from the server replicas as “votes” as to the correct
response. This approach is often called “state machine replication”, “active
replication”, or “n-modular redundancy” [48].

Systems that employ redundancy and distribution often do not scale well as the
number of replicas grows. This can result from many different phenomena. For
example, if the number of replicas grows dynamically and opportunistically, then
this presents challenging search problems, namely finding suitable hosts for
deployment of replicas and, once deployed, for enabling clients to find replicas.
As another example, the core protocols underlying a technology like state
machine replication tend not to scale well in particular technical measures, such
as the message or communication complexity of the query and response
protocols. Indeed, in this approach, it is typically the case that adding new
servers only slows down the service, since it increases the protocols’ obligations
e.g., to order requests among more servers.

As a “seedling” effort, our goal was to examine a variety of directions for gaining
scalability in systems that employ redundancy. Of the approaches we explored,
the two detailed in this report are the directions we matured the most during the
duration of this project. The first direction is targeted at the resource location
issue above, i.e., to find hosts suitable for the deployment of replicas or to find
replicas of servers or objects themselves. So as to make our approach to this
problem as general as possible, we abstracted this problem into simply that of
keyword search in a network, i.e., to identify hosts holding files containing
selected keywords. As these files can include, e.g., object names, service
names, or available resources, this technology can easily be specialized to
support the location of replicas or suitable hosts for them.

The second effort that we describe here targets the scaling limitations of
redundancy protocols themselves. Specifically, we developed new protocols for
implementing a Byzantine fault-tolerant data storage service. Our new protocols
draw techniques from our prior work on adapting quorum systems to mask
arbitrary replica failures (corruptions) [31][33]. In this approach, clients interact
with only a subset (quorum) of server replicas in each request. In contrast to

 2

state machine replication, this approach can achieve load balancing in a
replicated service, and so can scale better. Moreover, we believe our protocols
are the first to achieve linearizable data semantics [21] for read-write storage in a
scalable fashion.

Both of our efforts have yielded encouraging follow-on developments, one a
successful transition to the government and one to a submission to the Self-
Regenerative Systems program from DARPA IPTO. First, the tool we developed
for distributed keyword search, called Mingle, was adopted by the security officer
in National Climate Data Center (NCDC; http:/www.ncdc.noaa.gov) to search
distributed network logs for network monitoring and management. NCDC is the
world's largest archive of weather data and also does analysis of weather data
and current weather trends. Being a government organization, and having
multiple high-speed connections and much storage space, they get their fair
share of attackers trying to break into their servers. For network monitoring and
management, NCDC collects gigabytes of traffic logs (tcpdump files, email server
logs, Web server logs, etc.) on numerous distributed computers on a daily basis.
The security officer uses Mingle to index and search through these logs quickly
to see if an IP address has been to their network before, to look for access
patterns for a specific IP address, to search for keywords that correlate individual
user's network activities, etc. Since logs are distributed around the center,
security is important to prevent unauthorized access. In addition, the speed that
Mingle provides and its scalability to search a large intranet also make Mingle
appealing for this usage. Though this is not specifically the use of Mingle that we
had anticipated, this example is a compelling dual use for this technology, and
we are excited that it has found use in the government.

The second follow-on development to the work described here is that the second
effort described above has formed a starting point for a new submission to the
Self-Regenerative Systems program from DARPA IPTO, which we have been
given preliminary indication will be funded. To the extent that such indications of
government interest are the measure of success for a “seedling” effort such as
this, we believe this project has been fruitful.

1.1 Publications

Papers describing portions of the work in this project were or will be presented at
the 11th IEEE International Symposium on High Performance Distributed
Computing and the 2004 International Conference on Dependable Systems and
Networks.

1.2 Patents

There were no patents filed as a result of this project.

 3

1.3 Financial Summary

The full budget of $588,539.00 was expended during the performance period.
This money was used primarily to support graduate students working on the
project, as well as faculty members involved in this project.

 4

2 A Secure Distributed Search System

Although there are a number of useful tools for locating data on a single
machine, locating data in a distributed environment can be troublesome. Tools
like grep and find are good for searching small directory hierarchies, but are
inappropriate for searching entire disks. The GNU locate command provides
fast keyword search of file names, but not the contents of those files. Tools, such
as Glimpse [34] and Windows Indexing Service, precompute inverted index
tables of local files. Each entry in the index table stores a word and its
occurrences in the files, which enables fast keyword querying. However, these
tools do not support querying across different computers. Peer-to-peer
applications such as Napster1, Gnutella2 and Freenet [10] have been used for
large-scale locating and sharing of MP3 files. A drawback of such systems is that
there is no security mechanism to protect data from access by unauthorized
users. In addition, no indexing is provided to quickly locate information.

Thus, we believe we need new systems that help people and applications find
data in distributed computing environments. These systems should be both
efficient, in the sense that searches complete quickly, and secure, in the sense
that unauthorized users are not allowed to locate data. So how might we build
such systems?

A straightforward solution is to build a global indexing service, where dedicated
servers crawl files from every computer on the Internet and then compute a
centralized index table. Search engines like Google3 have used this kind of
scheme very effectively for the Web. However, the centralized model is
inappropriate for searching personal computing systems and other nonpublic
data for a number of reasons. First, indexing is an expensive operation requiring
large amounts of memory and disk space. Even massive search engines like
Google can index only limited number of Web pages. Therefore, centralized
indexing servers do not scale with the increasing number of computers and the
exploding capacities of modern disks. Second, many personal files are private in
nature. Users lose control of their files once they are indexed by the server.
Even with complicated security and access control mechanisms, they may be
unwilling to release their files to remotely administered servers.

Another approach is to have one or more dedicated indexing servers for a cluster
of computers. For example, distributed search engines such as Harvest [4] set up
one or more index servers to search within an intranet. With this scheme, a
significant amount of network traffic is needed to fetch distributed files to the
servers for index computing. More important, this scheme requires large,

1 http://www.napster.com
2 http://www.gnutella.com
3 http://www.google.com

 5

expensive, dedicated indexing servers, which are not feasible in a personal
computing environment.

In this section, we present Mingle, a secure distributed search system. Mingle is
designed to meet the following requirements, which we consider fundamental to
a distributed search system for personal computing and sensitive applications:

• Searches should be fast. For fast search, Mingle precomputes an
inverted index of local files on each participating host. A query can be
processed by the local host, or routed through the participating hosts
using peer-to-peer communication to locate all of the desired data.

• The system should scale. Since each participating host devotes

computing resources for indexing, the Mingle scheme should scale well
with the number of computers. Participating hosts communicate with each
other only when there is a search request, greatly reducing network traffic.

• The system should be secure. The Mingle security architecture focuses

on preventing unauthorized release of information while allowing files to
be maximally shared. Since search is presumably a frequent operation,
we insist that the security mechanism be as convenient as possible for
users. Access control policy is expressed using an access-right mapping,
a novel mechanism that extends a local file system's access control
primitives to Mingle users in a uniform and convenient way. This
mechanism builds upon a single sign-on mechanism implemented in
Mingle, which allows a user to perform authenticated search requests
across many Mingle servers seamlessly.

The remainder of this section is organized as follows. Section 2.1 summarizes
related work. Sections 2.2, 2.3, and 2.4 describe the Mingle prototype, including
the novel security architecture based on access-right mapping. A preliminary
performance evaluation of the Mingle prototype is in Section 2.5.

2.1 Related Work

Distributed search has been studied in the area of information retrieval
[6][15][25][54], with emphasis on algorithms for server selection and result
merging. Mingle is different from these works in that our focus is on the system
architecture and the security mechanisms to prevent data from access by
unauthorized users.

Peer-to-peer systems [44][51][47][58] have been designed to locate objects in
self-organizing overlay networks. Such systems use hash based distributed
indexing schemes to locate objects. The location of each object is stored at one
or more nodes selected by a distributed hash function. Although hash functions
can deterministically locate an object, they do not support keyword searching.

 6

2.2 Overview of the Mingle System

On each host, there is a Mingle server running as a daemon. Communication
among servers is peer-to-peer. A user may issue a request from any host to any
of the servers by launching a lightweight client program, which simply sends the
request to the local server and waits for replies. If only a local reply is required,
then the local server handles the request and sends back the reply. Otherwise,
the server forwards the request to remote servers for further processing.

Mingle clients issue separate requests for indexing and searching. Only the
owners of files can issue requests to index those files. Any Mingle user can issue
a search request to any Mingle server, but they only receive information about
files that they are authorized to see, as described in the next section.

When a Mingle server daemon is started on a host for the first time, none of the
files on that host are indexed. Users must make explicit requests to the Mingle
server to index directory trees that they own. Thus Mingle is “opt-in”, in the sense
that users on Mingle hosts must issue explicit requests before their data is
indexed and made available to Mingle clients.

Each Mingle server computes an inverted index of local files that have been
indexed. The inverted index consists of: (1) a lexicon containing all of the words
that appear in the files; and (2) an inverted file entry for each word, which stores
a list of pointers to the occurrences of that word in the files. To locate a given
word, only its inverted file entry needs to be traversed, allowing fast queries. The
detailed design and data structures of the inverted index in Mingle are discussed
in Section 2.4.1.

In many cases, a user may wish to search all hosts in a Mingle cluster without
specifying host identities. To enable this, we establish a master server, which is a
normal Mingle server that maintains the list of host names inside the cluster.
Upon reception of a user request that needs to be routed through the cluster, the
local server first fetches the host list from the master server, and then forwards
the request to each remote host in the list individually.

While the server is implemented as a daemon, the client program is a lightweight
program that is launched only when needed. An alternative design is for each
user to run their own stand-alone server that they interact with via the command
line. This approach would lead to multiple server processes running
simultaneously on the same computer, leading to a large overhead. By
implementing a separate lightweight client program, we build one index table and
enable multiple users on the same host to share a single Mingle server.

 7

2.3 Mingle Security Architecture

The Mingle security architecture focuses on preventing unauthorized release of
information while allowing files to be shared among different types of users. Both
the local users who have accounts on the Mingle host and remote users who do
not have accounts should be able to participate in Mingle. Sensitive files can be
accessed only by authorized users, while public files can be searched by even
anonymous users.

Existing mechanisms are deficient in terms of both flexibility and user
convenience. Mingle users might belong to different organizations and not have
accounts on every machine. In this case, file system access controls on the
Mingle hosts are not flexible enough to separate remote visitors into different
classes of trustworthiness. Further, search is a stateless request involving one
simple command. Supplying passwords with each request is not acceptable.

The design of the Mingle security architecture is guided by the following three
principles:

• File owners decide whom to trust. We cannot expect every Mingle user
to trust the same set of people. We must let file owners decide who is
allowed to access their files.

• Authorization is flexible and convenient. Because some files are more

sensitive than others and some people are more trustworthy than others,
file owners must be able to specify access rights for different users on
each single file conveniently.

• Authentication has small overhead. Since “search” is a stateless

operation for everyday usage, we require the user authentication
mechanism to be as lightweight as possible while providing reasonable
level of security.

In the following, we present the details of the Mingle security architecture. We
begin by describing the authorization mechanism, which addresses the first and
second principles. We then discuss the user authentication mechanism, which
addresses the third design principle. We close this subsection with a discussion
of possible malicious attacks against Mingle.

2.3.1 Authorization

A straightforward way to handle access control is to maintain an access control
list (ACL) for each file. Each item in the ACL specifies the permitted operations
for each user. Although ACLs are flexible, they can be costly and prone to error
since file owners must manually specify an ACL for each file.

 8

We propose a new, more convenient approach that arises from the observation
that the underlying file system in the Mingle host already enables access control
on each file. By granting a user (or group) “read” permission to a file, the file
owner implicitly allows that user (or group) to search the file as well. However,
the access control schemes in the file system are only applicable to local users
who have accounts on the same computer.

To extend the file system access control to a remote user, we introduce the idea
of access-right mapping. For a file owner with local account name A, a Mingle
user with Mingle ID U (see Section 2.3.2) can be mapped to a search protection
domain (SPD) that consists of one or more local users or user groups:

SPDA(U) = {userID1, userID2, …, groupID1, groupID2, …},

where userIDi is some local user account name, and groupIDi is some local
group name.

The meaning of the mapping is that Mingle user U has permission to search any
local file owned by A and readable by one or more members of SPDA(U).

The process of access-right mapping is performed by each file owner
independently. Thus, a Mingle user can be mapped to different SPDs by
different file owners on the same host. Given the access-right mapping, the
algorithm for access permission checking is simple, as shown below.

// Return whether Mingle user U is allowed to search file F
bool is_search_permitted(filename F, mingle_user U) {

 // Get the file owner of F
 O = get_file_owner(F);

 // Get the SPD of U with respect to the file owner O
 SPD = O.get_SPD(U);

 // Check if any member in SPD is allowed to read F
 foreach id in SPD {
 if F is readable by id {
 return true;
 }
 }

 return false;
}

The access-right mapping preserves the file system access control semantics. It
greatly simplifies the access control specification, while giving file owners full

 9

control over their data. For example, each Unix file has 9 mode bits associated
with it. These mode bits specify whether the file owner, specific group of users,
and everyone else can read, write or execute the file. In many cases, a file
owner can map a friendly remote Mingle user to an SPD that consists of only the
owner account or a “guest” account, allowing file owners to specify access
permissions to most of their files conveniently. For the small number of files that
need fine-grained access control, file owners can define a user group for each
file and map Mingle users to the corresponding user groups. In particular, in
order to allow anonymous Mingle users to search shared public files, a file owner
can define a special user group for public files and map any anonymous user to
that group.

2.3.2 User Authentication

In Mingle, each request to index or search files on a host must be authenticated
by that host. Since a Mingle user might not have accounts on every host, or
might have different account names on different hosts, each Mingle user is
assigned a unique global Mingle ID (a text string) that identifies the user to
Mingle servers in a uniform way. A Mingle user without a Mingle ID is regarded
as an anonymous Mingle user and can search only public files.

A Mingle ID is assigned to a user via a registration process that she executes
once. In this registration process, the user selects and inputs a Mingle ID and
password to her lightweight client, which conveys these inputs to the local Mingle
server. The local Mingle server sends this pair to the master server for this
Mingle cluster, using an encrypted channel (e.g., encrypted under the public key
of the master server). The master server confirms that this Mingle ID has not
previously been registered. If so, it generates a public signing key pair (e.g.,
[46]) for this Mingle ID, and saves the Mingle ID and associated password and
key pair. Upon successful return, the user can convey her Mingle ID to other
users in whatever way she wishes, so that these users can create access-right
mappings (see Section 2.3.1) for this Mingle ID on other machines, as they
choose. An alternative is to use the public key itself, or its hash, as the user’s
Mingle ID, and then to rely on an external certification infrastructure to convey the
identity of the owner of this Mingle ID to others.

This user can then execute distributed searches using Mingle from any computer
running a Mingle server as follows. The user enters her Mingle ID, password,
and search keyword into the Mingle client, which conveys these to the local
Mingle server. The local Mingle server executes a protocol with the master
server to retrieve the private key corresponding to this Mingle ID (using the
password to authenticate to the master server). Once the private key is
obtained, the local Mingle server can issue the query, containing the user's
Mingle ID and signed using the retrieved private key, to the relevant remote
Mingle servers. Either a certificate binding the Mingle ID to the public verification
key can be sent along with this request, or else the remote Mingle server can use

 10

the contained Mingle ID to retrieve the corresponding public key from the master
server. Once it has the appropriate public key, it can verify the signature.

There are numerous opportunities to use caching to eliminate steps in the above
description and thereby improve the user experience. Specifically, the user's
local Mingle server can temporarily cache the user's private key for use in
subsequent searches, which eliminates the need for the user to re-enter her
Mingle ID or password. Moreover, a remote Mingle server can temporarily cache
the public key of this Mingle ID, so that it need not contact the master server
again upon receiving another search query bearing this Mingle ID. Of course,
this caching also introduces windows of vulnerability: e.g., if the user's public key
is revoked due to the compromise of the corresponding private key, this may go
unnoticed by a remote Mingle server that is caching the public key. It is therefore
necessary to tune this caching to best balance performance, user experience,
and security. Such tradeoffs are common in public key infrastructures (e.g.,
[30]).

A benefit of this architecture is the fact that the user's password and private key
are exposed only on machines where the user enters her password (and on the
master server). Moreover, the protocol by which the user's machine retrieves the
user's private key can be constructed to achieve strong security properties (e.g.,
see [40]), notably that the protocol messages themselves do not leak information
that would permit an eavesdropping adversary to conduct a “dictionary attack”
against the user's password [37][26]. As a result, dictionary attacks are limited to
online guesses sent to the master server, which the server can detect and stop.
The primary vulnerability of this approach is the master server itself: if
penetrated, the master server will leak all users’ private keys. This risk can be
mitigated by distributing the master server in a way that requires multiple master
servers to be compromised to disclose sensitive data (e.g., [14]), though we have
not implemented this approach in the present system.

We view the above approach to user authentication and single sign-on in Mingle
as an interim solution suitable for Mingle deployments in user populations lacking
a unified authentication infrastructure. For user populations with an existing
authentication and single sign-on solution, ideally Mingle would exploit that
solution for its user authentication needs.

2.3.3 Other Vulnerabilities

We briefly outline types of malicious attacks that Mingle is vulnerable to and
discuss possible ways to cope with them. Completely addressing these attacks
is beyond the scope of this seedling project.

Mingle query responses are sent from remote servers unencrypted, and thus
Mingle is vulnerable to information release and modification attacks. Moreover,
without strong authentication of servers, a malicious Mingle server can provide

 11

fraudulent information. If data privacy and integrity is a major concern, then
further cryptographic protocols can be used to authenticate servers as well as
clients, and to set up session keys for message encryption.

A potential vulnerability to timing attacks exists within Mingle, due to its
precomputation of an inverted index to permit fast searching. Specifically, the
processing time for a Mingle server to compute its response is a function of the
number of files actually containing the search item, not only those to which the
client has search access. As a result, a client that can accurately measure the
duration required for a Mingle daemon to respond to its search request can learn
some information about the number of files on that host that contain the search
item, even if the client has search access to very few of them. Randomizing
search latencies could mitigate this threat. In addition, a filter could be applied to
check user permission before searching through the inverted index. We note,
however, that this threat applies only to files that their owners have volunteered
to be indexed by Mingle.

Finally, like most other distributed systems, Mingle is vulnerable to various forms
of denial-of-service attacks.

2.4 Mingle Implementation

In this section, we discuss the implementation of the Mingle server and client. We
first describe the design of the inverted index in Mingle. Then we present the
Mingle server architecture and explain the interactions among various system
components.

2.4.1 Inverted Index

Indexing is a mechanism for quickly locating a given word in a collection of files.
There are three common data structures for file indexing: inverted index,
signature files and bitmaps (see [56]). An inverted index is the most natural
indexing method, with each entry consisting of a word and its occurrences in the
files. A signature file is a probabilistic method for file indexing, where each file
has a signature. Every indexed word in a file is used to generate several hash
values. The bits of the signature corresponding to those hash values are set to
one, indicating the occurrences of the word. A bitmap stores a bit vector for every
word. Each bit in the bit vector corresponds to a file and is set to one if the word
appears in that file. Compared with the inverted index, signature files can cause
false matches, resulting in either longer search times or large signature files.
Bitmaps have relatively short search times, but require extravagant storage
space and the update is slow when files are updated frequently. In Mingle, we
decided to choose the inverted index because of its relatively small cost of
storage and low search latency.

 12

However, a fine-grained inverted index is still space consuming. A fine-grained
inverted index containing all occurrences of every word can consume 50% to
300% of the original text size, which may not be acceptable. Therefore, Mingle
computes a coarse-grained inverted index. Each index entry for a word contains
only the first occurrence of that word in every file. A hash table is used to quickly
locate the index entry for a word.

Before a file is indexed, it is assigned a document ID. Then the file is scanned
word by word to build the index table incrementally. All of the words are
converted to lower case. User specified stop words (defined by a configuration
file) are removed to reduce index size. For each word in the index table, if it
appears multiple times in the file, then only the position of the first occurrence of
that word will be recorded in the corresponding index entry. Below is an example
of inverted index table in Mingle. Once the index table is built, it can be updated
regularly to remove out of date entries.

Word ID Word (Document ID; First occurrence)
1 movie (1;6), (4; 228)
2 day (2;8), (3;57), (4;200)
3 event (1;37), (3;22)

A query can consist of one or more keywords. With a coarse-grained inverted
index table, queries are resolved in two steps. First, the corresponding index
entries of the queried keywords are searched to return a list of files that match
the query. Then, each individual file in the list is scanned to return all the exact
occurrences of the queried keywords. There is a tradeoff between index
granularity and search latency. Compared with the fine-grained inverted index, a
coarse-grained index table requires longer search latency since the second step
will be otherwise unnecessary. However, the extra latency is typically small, as
is shown in Section 2.5.

2.4.2 Mingle Server Architecture

The Mingle server is implemented as a single process. The file descriptor
manager uses the select function to multiplex concurrent requests. After a
request has been received by the receiver, it is parsed by the request manager,
which determines the request type and forwards the request to the appropriate
components for further processing. The major components that process a user
request are the file indexer, query processor, and security manager. The file
indexer accesses files from the local disk and builds up an inverted index table in
disk. For performance optimization, the file indexer maintains a cache in memory
for frequently accessed terms and their indices. The query processor processes
user queries, including advanced query options based on the index table built by
the file indexer. The security manager performs access control.

 13

Both the Mingle server and the client program are implemented in C++. The
request signing and signature verification use the RSA algorithm [46], which is
implemented by the Crypto++ library (version 4.2)4. The communications among
servers are via TCP connections, while the server and the client program
communicate via Unix IPC.

2.5 Performance Evaluation

In this section, we present the performance evaluation of Mingle. We have
conducted three sets of experiments to answer the following three questions: (1)
What is the cost of index and search⎯the two major operations in Mingle? (2)
What is the impact of our security mechanism on performance? (3) What is the
scalability of Mingle? The first and the second sets of experiments are
conducted on PIII 550MHz machines with 128 MB of RAM. The last set of
experiments is run on the cluster of computers (PIII 550MHz) in a 10BaseT
Ethernet LAN. Each data point in the figures is the average of ten runs.

2.5.1 What is the Cost of Index and Search?

Since only text files will be indexed, we have downloaded the RFC5 and the
Internet Drafts6 repositories to test the index performance. We vary the text size
to be indexed. The figures below plot the index latency and the generated index
table size. We observe that both costs increase linearly with the text size. It takes
about 30 minutes to index 200 MB of text (about 9 seconds per 1 MB). Usually,
only a portion of the data on a disk will be text. With the current index speed, we
can index a local disk regularly during machine idle time. The generated index
table size is about 15% of the original text size.

4 http://www.eskimo.com/~weidai/cryptlib.html
5 http://www.rfc-editor.org
6 http://www.ietf.org/ID.html

 14

With the pre-computed index table, we then examine the search latency on the
local server without using our security mechanisms. We vary the indexed text
size and the number of keywords in a query. The figure below plots the query
lookup latency in the case of cache hits, when the required items in the index
table are already in memory. Overall, the search latency is on the order of
milliseconds and seconds, which is fast. For example, in 200 MB text, it takes
about 250 ms to find answers to a two-keyword query, while it takes as long as
15 seconds to get the same results using grep. If the keywords in a query do
not exist in the indexed text, the search latency is less than 1ms regardless of the
indexed text size.

2.5.2 What is the Impact of Security on Performance?

In this section, we measure the impact of the Mingle security mechanism on
performance. Since cryptographic computation is often expensive, our main
concern is the latency penalty of cryptographic operations for remote user
authentication. We evaluate the cost of request signing and signature verification
by measuring the time spent in each step of request processing.

We conducted our experiments on two machines serving as the local server and
the remote server respectively in the same LAN. Since the security penalty does
not depend on request type, we choose a 3-keyword search request as our
example and fix the indexed text size to be 100 MB. We use 1024-bit RSA keys.
The table below includes the processing steps we are interested in. The
processing consists of two stages: First, the request is parsed and signed at the
local server, and forwarded to the remote server. Second, the remote server

 15

verifies the signature and generates the reply by query lookup. The “Total”
column corresponds to the time elapsed between the arrival of the request and
sending the reply to the client program by the local server. The “Networking”
column corresponds to the latency spent in forwarding the request and getting
the reply from the remote server. For each step, we show the mean and the
standard deviation of latency in milliseconds, as well as the percentage of total
latency.

 Total Parsing Networking Lookup Signing Sig Verify
Mean 313590 940 6010 279530 25710 1400
Std dev 2615 15 643 2613 44 25
Percentage 100.0% 0.3% 1.9% 89.1% 8.2% 0.5%

We can see from the above table that most of the processing latency is spent on
query lookup. Although request signing is also expensive, it is not the
performance bottleneck. Compared with signing, signature verification is fast.
Note that the standard deviation is small for all steps except networking latency,
which has a relatively larger variation due to the network instability. In summary,
our security mechanism has little impact on overall search performance.

2.5.3 What is the Scalability of Mingle?

In this section, we examine whether Mingle is able to scale with an increasing
number of hosts. We consider scenarios with and without our security
mechanism. We run the Mingle server on every host in a cluster of up to 23
computers. Each server has a precomputed index table of 100 MB text.

The figure below plots the average search latency and the standard deviations
without security checking by varying the number of participating hosts. We can
see that the performance degradation is not constant with the increasing number
of Mingle servers. The search latency increases most when the number of hosts
in Mingle increases from one to three. The increased latency is due to network
communication and remote processing, which do not happen in the single server
case. When we further increase the number of participating hosts, the
performance degradation becomes smaller. The reason is that although the
network communication time is increased, the remote processing can be done in
parallel on different servers. We note that when the number of hosts is greater
than 21, the search latency with security checking is even lower than that without
security checking. This is because the security overhead is small compared with
the overall search latency. The lower search latency with security checking is due
to the large variance of network latencies when there are more hosts in the
cluster. Overall, our measurements suggest that Mingle is able to scale with
increasing number of hosts.

 16

2.6 Discussion

We have developed Mingle to help authorized users efficiently locate their data in
distributed computing environments. Mingle hosts precompute an inverted index
of local files, searching among each other in a peer-to-peer way. The Mingle
security architecture consists of authorization and authentication mechanisms.
One of the major benefits of our security mechanism is user convenience. For
authorization, we introduce an access-right mapping that allows data owners to
conveniently specify access permissions. This is supported using a user
authentication mechanism that permits a form of single sign-on.

Future work includes expanding Mingle to larger networks via hierarchically
organizing clusters; considering schemes for encrypting and replicating host
indexes; and better understanding Mingle's vulnerability to attacks such as timing
attacks.

 17

3 Byzantine-tolerant erasure-coded storage

Survivable storage systems spread data redundantly across a set of distributed
storage-nodes in an effort to ensure its availability despite the failure or
compromise of storage-nodes. Such systems require some protocol to maintain
data consistency and liveness in the presence of failures and concurrency.

This section presents a new consistency protocol that operates in an
asynchronous environment and tolerates Byzantine failures of clients and
storage-nodes. The protocol supports a hybrid failure model in which up to t
storage-nodes may fail: b ≤ t of these failures can be Byzantine and the
remainder can be crash. The protocol requires at least 2t+2b+1 storage-nodes.
The protocol also supports use of m-of-n erasure codes (i.e., m-of-n fragments
are needed to reconstruct the data), which usually require less network
bandwidth (and storage space) than full replication [55][57].

Briefly, the protocol works as follows. To perform a write, a client determines the
current logical time and then writes time-stamped fragments to at least a
threshold quorum of storage-nodes. Storage-nodes keep all versions of
fragments they are sent until garbage collection frees them. To perform a read, a
client fetches the latest fragment versions from a threshold quorum of storage-
nodes and determines whether they comprise a completed write; usually, they
do. If they do not, additional and historical fragments are fetched, and repair may
be performed, until a completed write is observed.

The protocol gains efficiency from five features. First, the space-efficiency of m-
of-n erasure codes can be substantial, reducing communication overheads
significantly. Second, most read operations complete in a single round trip:
reads that observe write concurrency or failures (of storage-nodes or a client
write) may incur additional work. Most studies of distributed storage systems
(e.g., [3][38]) indicate that concurrency is uncommon (i.e., writer-writer and
writer-reader sharing occurs in well under 1% of operations). Failures, although
tolerated, ought to be rare. Third, incomplete writes are replaced by subsequent
writes or reads (that perform repair), thus preventing future reads from incurring
any additional cost; when subsequent writes do the fixing, additional overheads
are never incurred. Fourth, most protocol processing is performed by clients,
increasing scalability via the well-known principle of shifting work from servers to
clients [22]. Fifth, the protocol only requires the use of cryptographic hashes,
rather than more expensive cryptographic primitives (e.g., digital signatures).

This protocol is timely because many research storage systems are investigating
practical means of achieving high fault tolerance and scalability. Examples
include the FARSITE project at Microsoft Research [1], the Federated Array of
Bricks project at HP Labs [16], and the OceanStore project at Berkeley [28].
Some of these projects (e.g., [1][28]) use Castro's Byzantine Fault Tolerant (BFT)
library [7]. Many of these projects (e.g., [16][28]) are considering the use of

 18

erasure codes for data storage. Our protocol for Byzantine-tolerant erasure-
coded storage can provide an efficient, scalable, highly fault-tolerant foundation
for such storage systems.

3.1 Background

In a decentralized storage system, multiple storage-nodes work together to
implement a service for read-write storage. To write a data-item D, Client A
issues write requests to multiple storage-nodes. To read D, Client B issues read
requests to an overlapping subset of storage-nodes. This scheme provides
access to data-items even when subsets of the storage-nodes have failed. One
difficulty created by this architecture is the need for a consistent view, across
storage-nodes, of the most recent update. Without such consistency, data loss is
possible or even likely.

A common data distribution scheme used in such systems is replication, in which
a writer stores a replica of the new data-item value at each storage-node to
which it sends a write request. Since each storage-node has a complete
instance of the data-item, the main difficulty is identifying and retaining the most
recent instance. Alternately, more space-efficient erasure coding schemes can
be used to reduce network load and storage consumption. With erasure coding
schemes, reads require fragments from multiple servers. Moreover, to decode
the data-item, the set of fragments read must correspond to the same write
operation.

To provide reasonable semantics, storage systems must guarantee that readers
see consistent data-item values. Specifically, the linearizability of operations is
desirable for a shared storage system. Our protocol tolerates Byzantine faults of
any number of clients and a limited number of storage nodes while implementing
linearizable [21] and wait-free [19] read-write objects. Linearizability is adapted
appropriately for Byzantine clients,7 and wait-freedom is as in the model of
Jayanti et al. [23].

As discussed in Section 1, most prior systems implementing Byzantine fault-
tolerant services adopt the replicated state machine approach [48], whereby all
operations are processed by server replicas in the same order (atomic
broadcast). While this approach supports a linearizable, Byzantine fault-tolerant
implementation of any deterministic object, such an approach cannot be wait-free
[19][23]. Instead, such systems achieve liveness only under stronger timing
assumptions, such as synchrony (e.g., [11][42][50]) or partial synchrony [12]
(e.g., [7][24][45]), or probabilistically (e.g., [5]). An alternative is Byzantine
quorum systems [31], from which our protocol inherit techniques (i.e., our
protocol can be considered a Byzantine quorum system that uses the threshold

7 Specifically, return values of reads by Byzantine clients are ignored, as are begin times of writes
by Byzantine clients.

 19

quorum construction). Protocols for supporting a linearizable implementation of
any deterministic object using Byzantine quorums have been developed (e.g.,
[8]), but also necessarily forsake wait-freedom to do so. Additionally, most
protocols using Byzantine quorum systems utilize digital signatures, which are
computationally expensive.

Byzantine fault-tolerant protocols for implementing read-write objects using
quorums are described in [20][32][35][41]. Of these related quorum systems,
only Martin et al. [35] achieve linearizability in our fault model, and this work is
also closest to ours in that it uses a type of versioning. In our protocol, a reader
may retrieve fragments for several versions of the data-item in the course of
identifying the return value of a read. Similarly, readers in [35] “listen” for
updates (versions) from storage-nodes until a complete write is observed.
Conceptually, our approach differs by clients reading past versions, versus
listening for future versions broadcast by servers. In our fault model, especially
in consideration of faulty clients, our protocol has several advantages. First, our
protocol works for erasure-coded data, whereas extending [35] to erasure coded
data appears nontrivial. Second, ours provides better message efficiency: [35]
involves a Θ(N2) message exchange among the N servers per write (versus no
server-to-server exchange in our case) over and above otherwise comparable
(and linear in N) message costs. Third, ours requires less computation, in that
[35] requires digital signatures by clients, which in practice is two orders of
magnitude more costly than the cryptographic transforms we employ.
Advantages of [35] are that it tolerates a higher fraction of faulty servers than our
protocol, and does not require servers to store a potentially unbounded number
of data-item versions. Our prior analysis of versioning storage, however,
suggests that the latter is a non-issue in practice [52], and even under attack this
can be managed using a garbage collection mechanism we discuss in Section
3.5.3.

There exists much prior work (e.g., [2][20][36]) that combines erasure coded data
(e.g., [43][49]) with quorum systems to improve the confidentiality and/or integrity
of data along with its availability. However, these systems do not provide
consistency (i.e., an external synchronization mechanism is required) and do not
cope with Byzantine clients.

We develop our protocol for a hybrid failure model of storage-nodes (i.e., a mix of
crash and Byzantine failures). The concept of hybrid failure models was
introduced by Thambidurai and Park [53]. Other protocols have been developed
for such failure models: e.g., Garay and Perry [17] consider reliable broadcast,
consensus and clock synchronization in the hybrid failure model and Malkhi,
Reiter and Wool [33] consider the resilience of Byzantine quorum systems to
crash faults.

 20

3.2 System Model

We describe the system infrastructure in terms of clients and storage-nodes.
There are N storage-nodes and an arbitrary number of clients in the system.

A client or storage-node is correct in an execution if it satisfies its specification
throughout the execution. A client or storage-node that deviates from its
specification fails. We assume a hybrid failure model for storage-nodes. Up to t
storage-nodes may fail, b ≤ t of which may be Byzantine faults [29]; the
remainder are assumed to crash. We make no assumptions about the behavior
of Byzantine storage-nodes and Byzantine clients (e.g., we assume that
Byzantine storage-nodes can collude with each other and with any Byzantine
clients). A client or storage-node that does not exhibit a Byzantine failure (it is
either correct or crashes) is benign.

The protocol tolerates crash and Byzantine clients. As in any practical storage
system, an authorized Byzantine client can write arbitrary values to storage,
which affects the value of the data, but not its consistency. We assume that
Byzantine clients and storage-nodes are computationally bounded so that we can
benefit from cryptographic primitives.

We assume an asynchronous model of time (i.e., we make no assumptions
about message transmission delays or the execution rates of clients and storage-
nodes, except that it is non-zero). We assume that communication between a
client and a storage-node is point-to-point, reliable, and authenticated: a correct
storage-node (client) receives a message from a correct client (storage-node) if
and only if that client (storage-node) sent it to it.

There are two types of operations in the protocol ⎯ read operations and write
operations ⎯ both of which operate on data-items. Clients perform read/write
operations that issue multiple read/write requests to storage-nodes. A read/write
request operates on a data-fragment. A data-item is encoded into data-
fragments. Clients may encode data-items in an erasure-tolerant manner; thus
the distinction between data-item and data-fragment. Requests are executed by
storage-nodes; a correct storage-node that executes a write request hosts that
write operation.

Storage-nodes provide fine-grained versioning; correct storage-nodes host a
version of the data-fragment for each write request they execute. There is a well
known zero time, 0, and null value, ⊥, which storage-nodes can return in
response to read requests. Implicitly, all stored data is initialized to ⊥ at time 0.

 21

3.3 Protocol

This section describes our Byzantine fault-tolerant consistency protocol that
efficiently supports erasure-coded data-items by taking advantage of versioning
storage-nodes. It presents the mechanisms employed to encode and decode
data, and to protect data integrity from Byzantine storage-nodes and clients. It
then describes the protocol in pseudo-code form. Finally, it develops constraints
on protocol parameters that provide safety and liveness of the protocol.

3.3.1 Overview

At a high level, the protocol proceeds as follows. Logical timestamps are used to
totally order all write operations and to identify data-fragments pertaining to the
same write operation across the set of storage-nodes. For each write, a logical
timestamp is constructed by the client that is guaranteed to be unique and
greater than that of the latest complete write (the complete write with the highest
timestamp). This is accomplished by querying storage-nodes for the greatest
timestamp they host, and then incrementing the greatest response. In order to
verify the integrity of the data, a hash that can verify data-fragment correctness is
appended to the logical timestamp.

To perform a read operation, clients issue read requests to a subset of storage-
nodes. Once at least a read quorum of storage-nodes reply, the client identifies
the candidate⎯the response with the greatest logical timestamp. The set of read
responses that share the timestamp of the candidate comprise the candidate set.
The read operation classifies the candidate as complete, repairable, or
incomplete. If the candidate is classified as complete, the data-fragments,
timestamp, and return value are validated. If validation is successful, the value of
the candidate is returned and the read operation is complete; otherwise, the
candidate is reclassified as incomplete. If the candidate is classified as
repairable, it is repaired by writing data-fragments back to the original set of
storage-nodes (note, in [32], repair, for replicas, is referred to as “write-back”).
Prior to performing repair, data-fragments are validated in the same manner as
for a complete candidate. If the candidate is classified as incomplete, the
candidate is discarded, previous data-fragment versions are requested, and
classification begins anew. All candidates fall into one of the three classifications,
even those corresponding to concurrent or failed write operations.

3.3.2 Mechanisms

Several mechanisms are used in our protocol to achieve linearizability in the
presence of Byzantine faults.

 22

3.3.2.1 Erasure codes

In an erasure coding scheme, N data-fragments are generated during a write
(one for each storage-node), and any m of those data-fragments can be used to
decode the original data-item. Any m of the data-fragments can deterministically
generate the other N−m data-fragments. We use a systematic information
dispersal algorithm [43], which stripes the data-item across the first m data-
fragments and generates erasure-coded data-fragments for the remainder. Other
threshold erasure codes (e.g., secret sharing [49] and short secret sharing [27])
work as well.

3.3.2.2 Data-fragment integrity

Byzantine storage-nodes can corrupt their data-fragments. As such, it must be
possible to detect and mask up to b storage-node integrity faults.

3.3.2.2.1 Cross checksums
Cross checksums [18] are used to detect corrupt data-fragments. A
cryptographic hash of each data-fragment is computed. The set of N hashes are
concatenated to form the cross checksum of the data-item. The cross checksum
is stored with each data-fragment (i.e., it is replicated N times). Cross
checksums enable read operations to detect data-fragments that have been
modified by storage-nodes.

3.3.2.2.2 Write operation integrity
Mechanisms are required to prevent Byzantine clients from performing a write
operation that lacks integrity. If a Byzantine client generates random data-
fragments (rather than erasure coding a data-item correctly), then each of the N-
choose-m permutations of data-fragments could “recover” a distinct data-item.
Additionally, a Byzantine client could partition the set of N data-fragments into
subsets that each decode to a distinct data-item. These attacks are similar to
poisonous writes for replication as described by Martin et al. [35]. To protect
against Byzantine clients, the protocol must ensure that read operations only
return values that are written correctly (i.e., that are single-valued). To achieve
this, the cross checksum mechanism is extended in three ways: validating
timestamps, storage-node verification, and validated cross checksums.

3.3.2.2.3 Validating timestamps
To ensure that only a single set of data-fragments can be written at any logical
time, the hash of the cross checksum is placed in the low order bits of the logical
timestamp. Note, the hash is used for space-efficiency; instead, the entire cross
checksum could be placed in the low bits of the timestamp.

 23

3.3.2.2.4 Storage-node verification
On a write, each storage-node verifies its data-fragment against its hash in the
cross checksum. The storage-node also verifies the cross checksum against the
hash in the timestamp. A correct storage-node only executes write requests for
which both checks pass. Thus, a Byzantine client cannot make a correct
storage-node appear Byzantine. It follows, that only Byzantine storage-nodes
can return data-fragments that do not verify against the cross checksum.

3.3.2.2.5 Validated cross checksums
Storage-node verification combined with a validating timestamp ensures that the
data-fragments considered by a read operation were written by the client (as
opposed to being fabricated by Byzantine storage-nodes). To ensure that the
client that performed the write operation acted correctly, the reader must validate
the cross checksum. To validate the cross checksum, all N data-fragments are
required. Given any m data-fragments, the full set of N data-fragments a correct
client should have written can be generated. The “correct” cross checksum can
then be computed from the regenerated set of data-fragments. If the generated
cross checksum does not match the verified cross checksum, then a Byzantine
client performed the write operation. Only a single-valued write operation can
generate a cross checksum that verifies against the validating timestamp.
Instead of using validated cross checksums, our protocol could use verifiable
secret sharing [9][13]. Verifiable secret sharing enables storage-nodes to validate
that the client acted correctly on each write request (instead of validating the
data-item on each read operation).

3.3.3 Pseudocode

The pseudocode for the protocol is shown below. The symbol LT denotes logical
time and LTC denotes the logical time of the candidate. D1, …,DN denotes the N
data-fragments; likewise, S1, …,SN denotes the set of N storage-nodes. In the
pseudocode, the binary operator “|” denotes string concatenation. Simplicity and
clarity in the presentation of the pseudo-code were chosen over obvious
optimizations that could be used in an actual implementation.

 24

1. WRITE (Data):
2. TIME := READ_TIMESTAMP()
3. D1, …,DN := ENCODE(Data)
4. CC :=
 MAKE_CROSS_CHECKSUM(D1,…,DN)
5. LT := MAKE_TIMESTAMP(TIME, CC)
6. DO_WRITE(D1, …,DN, LT, CC)

7. READ_TIMESTAMP():
8. forall Si ∈ { S1, …,SN }
9. SEND(Si, TIME_REQUEST)
10. ResponseSet := ∅
11. repeat
12. ResponseSet :=
 ResponseSet ∪
 { RCV(StorageNode,
 TIME_RESPONSE) }
13. until (|ResponseSet| = N − t)
14. TIME :=
 MAX[ResponseSet.LT.TIME]
15. RETURN (TIME)

16. MAKE_CROSS_CHECKSUM(D1, …,DN):
17. forall Di ∈ D1, …,DN
18. Hi := HASH(Di)
19. CC := H1|…|HN
20. RETURN(CC)

21. MAKE_TIMESTAMP(LTM, CC):
22. LT.TIME := LTM.TIME + 1
23. LT.Verifier := HASH(CC)
24. RETURN(LT)

25. DO_WRITE(D1, …,DN, LT, CC):
26. forall Si ∈ { S1, …,SN }
27. SEND(Si, WRITE_REQUEST,
 LT, Di, CC)
28. ResponseSet := ∅
29. repeat
 ResponseSet :=
 ResponseSet ∪
 { RCV(StorageNode,
 WRITE_RESPONSE) }
30. until (|ResponseSet| = N − t)

Write operation pseudocode

1. READ():
2. ResponseSet :=
 DO_READ(READ_LATEST_REQUEST, ⊥)
3. loop
4. 〈CandidateSet, LTC〉 :=
 CHOOSE_CANDIDATE(ResponseSet)
5. if (|CandidateSet| ≥ INCOMPLETE)
6. /* Complete or repairable
 write found */
7. D1, …,DN :=
 GENERATE_FRAGS(CandidateSet)
8. VCC :=
 MAKE_CROSS_CHECKSUM(D1,…,DN)
9. if (VCC = CandidateSet.CC)
10. /* Cross checksum is
 validated */
11. if (|CandidateSet|<COMPLETE)
12. /* Repair is necessary */
13. DO_WRITE(D1,…,DN,LTC,VCC)

14. Data := DECODE(D1, …,DN)
15. RETURN (〈LTC, Data〉)

16. /* Incomplete or cross checksum
 not validated, loop again */
17. ResponseSet :=
 DO_READ(READ_PREV_REQUEST, LTC)

18. DO_READ(READ_COMMAND, LT):
19. forall Si ∈ { S1, …,SN }
20. SEND(Si, READ_COMMAND, LT)
21. ResponseSet := ∅
22. repeat
23. Resp := RCV(S, READ_RESPONSE)
24. if (VALIDATE(Resp.D, Resp.CC,
 Resp.LT, S) = TRUE)
25. ResponseSet :=
 ResponseSet ∪ { Resp }
26. until (|ResponseSet| = N − t)
27. RETURN(ResponseSet)

28. VALIDATE (D, CC, LT, S):
29. if ((HASH(CC) ≠ LT.Verifier) OR
 (HASH (D) ≠ CC[S]))
30. RETURN (FALSE)
31. RETURN (TRUE)

Read operation pseudo-code

3.3.3.1 Storage-node interface

Storage-nodes offer interfaces to write a data-fragment at a specific logical time;
to query the greatest logical time of a hosted data-fragment; to read the hosted
data-fragment with the greatest logical time; and to read the hosted data-
fragment with the greatest logical time before some given logical time. Given the

 25

simplicity of the storage-node interface, storage-node pseudo-code has been
omitted.

3.3.3.2 Write operation

The WRITE operation consists of determining the greatest logical timestamp,
constructing write requests, and issuing the requests to the storage-nodes. First,
a timestamp greater than, or equal to, that of the latest complete write must be
determined. Collecting N−t responses, on line 13 of READ_TIMESTAMP,
ensures that the response set intersects a complete write at a correct storage-
node. Since the environment is asynchronous, a client can wait for no more than
N−t responses. Fewer than N−t responses are actually required to observe the
timestamp of the latest complete write, since a single correct response is
sufficient.

Next, the ENCODE function, on line 3 of WRITE, encodes the data-item into N
data-fragments. The data-fragments are used to construct a cross checksum
from the concatenation of the hash of each data-fragment (line 19). The function
MAKE_TIMESTAMP, called on line 5, generates a logical timestamp to be used
for the current write operation. This is done by incrementing the high order bits of
the greatest observed logical timestamp from the ResponseSet (i.e., LT.TIME)
and appending the Verifier. The Verifier is just the hash of the cross checksum.

Finally, write requests are issued to all storage-nodes. Each storage-node is sent
a specific data-fragment, the logical timestamp, and the cross checksum. A
storage-node validates the cross checksum with the verifier and validates the
data-fragment with the cross checksum before executing a write request (i.e.,
storage-nodes call VALIDATE listed in the read operation pseudo-code). The
write operation returns to the issuing client once N−t WRITE_RESPONSE
messages are received (line 30 of DO_WRITE).

3.3.3.3 Read operation

The read operation iteratively identifies and classifies candidates, until a
repairable or complete candidate is found. Once a repairable or complete
candidate is found, the read operation validates its correctness and returns the
data. Note that the read operation returns a 〈timestamp, value〉 pair; in practice,
a client only makes use of the value returned.

The read operation begins by issuing READ_LATEST_REQUEST commands to
all storage-nodes (via the DO_READ function). Each storage-node responds with
the data-fragment, logical timestamp, and cross checksum corresponding to the
greatest timestamp it has executed.

The integrity of each response is individually validated through the VALIDATE
function, called on line 24 of DO_READ. This function checks the cross

 26

checksum against the Verifier found in the logical timestamp and the data-
fragment against the appropriate hash in the cross checksum.

Since, in an asynchronous system, slow storage-nodes cannot be differentiated
from crashed storage-nodes, only N−t read responses can be collected (line 26
of DO_READ). Since correct storage-nodes perform the same validation before
executing write requests, the only responses that can fail the client's validation
are those from Byzantine storage-nodes. For every discarded Byzantine
storage-node response, an additional response can be awaited.

After sufficient responses have been received, a candidate for classification is
chosen. The function CHOOSE_CANDIDATE, called on line 4 of READ,
determines the candidate timestamp, denoted LTC, which is the greatest
timestamp found in the response set. All data-fragments that share LTC are
identified and returned as the candidate set. At this point, the candidate set
contains a set of validated data-fragments that share a common cross checksum
and logical timestamp.

Once a candidate has been chosen, it is classified as complete, repairable, or
incomplete based on the size of the CandidateSet. The rules for classifying a
candidate as INCOMPLETE or COMPLETE are given in the following
subsection. If the candidate is classified as incomplete, a
READ_PREV_REQUEST message is sent to each storage-node with its
timestamp. Candidate classification begins again with the new response set.

If the candidate is classified as either complete or repairable, the candidate set
contains sufficient data-fragments written by the client to decode the original
data-item. To validate the observed write's integrity, the candidate set is used to
generate a new set of data-fragments (line 7 of READ). A validated cross
checksum, VCC, is computed from the newly generated data-fragments. The
validated cross checksum is compared to the cross checksum of the candidate
set (line 9 of READ). If the check fails, the candidate was written by a Byzantine
client; the candidate is reclassified as incomplete and the read operation
continues. If the check succeeds, the candidate was written by a correct client
and the read enters its final phase. Note that this check either succeeds or fails
for all correct clients regardless of which storage-nodes are represented within
the candidate set.

If necessary, repair is performed: write requests are issued with the generated
data-fragments, the validated cross checksum, and the logical timestamp (line 13
of READ). Storage-nodes not currently hosting the write execute the write at the
given logical time; those already hosting the write are safe to ignore it. Finally,
the function DECODE, on line 14 of READ, decodes m data-fragments, returning
the data-item.

 27

It should be noted that, even after a write completes, it may be classified as
repairable by a subsequent read, but it will never be classified as incomplete. For
example, this could occur if the read set (of N−t storage-nodes) does not fully
encompass the write set (of N−t storage-nodes).

3.4 Protocol constraints

The symbol Q denotes the number of benign storage-nodes that must execute
write responses for a write operation to be complete. Note that since threshold
quorums are used, Q is a scalar value. To ensure that linearizability and liveness
are achieved, Q and N must be constrained with regard to b, t, and each other.
As well, the parameter m, used in DECODE, must be constrained.

3.4.1 Write termination

To ensure write operations are able to complete in an asynchronous
environment,

Q ≤ N − t − b

Since slow storage-nodes cannot be differentiated from crashed storage-nodes,
only N − t responses can be awaited. As well, b responses received may be
from Byzantine storage-nodes.

3.4.2 Read classification

To classify a candidate as COMPLETE, a candidate set of at least Q benign
storage-nodes must be observed. In the worst case, at most b members of the
candidate set may be Byzantine, thus,

|CandidateSet| − b ≥ Q ⇒ COMPLETE

To classify a candidate as INCOMPLETE a client must determine that a
complete write does not exist in the system (i.e., fewer than Q benign storage-
nodes host the write). For this to be the case, the client must have queried all
possible storage-nodes (N − t), and must assume that nodes not queried host the
candidate in consideration. So,

|CandidateSet| + t < Q ⇒ INCOMPLETE

3.4.3 Real repairable candidates

To ensure that Byzantine storage-nodes cannot fabricate a repairable candidate,
a candidate set of size b must be classifiable as incomplete. Substituting b into

 28

|CandidateSet| + t < Q ⇒ INCOMPLETE

yields

b + t < Q

3.4.4 Decodable repairable candidates

Any repairable candidate must be decodable. The lower bound on candidate sets
that are repairable follows from the relations above, since the upper bound on
classifying a candidate as incomplete coincides with the lower bound for
classifying it as repairable:

1 ≤ m ≤ Q − t

3.4.5 Constraint summary

The constraints developed the previous section can be summarized as follows:

|CandidateSet| ≥ Q + b ⇒ COMPLETE

|CandidateSet| < Q − t ⇒ INCOMPLETE
t + b + 1 ≤ Q ≤ N − t − b

2t + 2b + 1 ≤ N
1 ≤ m ≤ Q − t

3.5 Discussion

3.5.1 Byzantine clients

In a storage system, Byzantine clients can write arbitrary values. The use of fine-
grained versioning (e.g., self-securing storage [52]) facilitates detection,
recovery, and diagnosis from storage intrusions. Once discovered, arbitrarily
modified data can be rolled back to its pre-corruption state.

Byzantine clients can also attempt to exhaust the resources available to the
protocol. Issuing an inordinate number of write operations could exhaust storage
space. However, continuous garbage collection frees storage space “behind” the
latest complete write. (See Section 3.5.3.) If a Byzantine client were to
intentionally issue incomplete write operations, then garbage collection may not
be able to free up space. In addition, incomplete writes require read operations to
roll-back behind them, thus consuming client computation and network
resources. In practice, storage-based intrusion detection [39] is probably
sufficient to detect such client actions.

 29

3.5.2 Timestamps from Byzantine storage-nodes

Byzantine storage-nodes can fabricate high timestamps that must be classified
as incomplete by read operations. Worse, in each subsequent round of a read
operation, Byzantine storage-nodes can fabricate more high timestamps that are
just a bit smaller than the previous. In this manner, Byzantine storage-nodes can
“attack” the performance of the read operation, but not its safety. To protect
against such denial-of-service attacks, the read operation can consider all unique
timestamps, up to a maximum of b+1, present in a ResponseSet as candidates
before soliciting another ResponseSet. In this manner, each “round” of the read
operation is guaranteed to consider at least one candidate from a correct
storage-node and no more than b candidates from Byzantine storage-nodes.

3.5.3 Garbage Collection

The wait-freedom of our protocol utilizing versioning relies on data versions not
exceeding the available storage capacity. If storage capacity is exhausted, wait-
freedom cannot be guaranteed. Prior experience indicates that it takes weeks of
normal activity to exhaust the capacity of modern disk systems that version all
write requests [52].

Garbage collection is used to avoid storage exhaustion. Briefly, garbage
collection works by each storage-node periodically performing a READ-like
protocol to determine the latest complete write per data-item, and then freeing
local versions that precede the latest complete write. In doing so, however, it can
interact with concurrent read operations and concurrent write operations in such
a manner that a read operation must be retried. Specifically a read operation
could classify a concurrent write operation as incomplete, the write operation
could then complete, and garbage collection could then delete all previous
complete writes. If this occurs, the read operation's next round will observe an
incomplete write with no previous history. Effectively, the read operation has
“missed” the complete write operation that it would have classified as such.
When it discovers this fact, the read operation retries (i.e., restarts by requesting
a new ResponseSet). Thus, in theory, a read operation faced with perpetual
write concurrency and garbage collection may never complete. In practice, such
prolonged interaction of garbage collection and read-write concurrency for a
given data-item should occur rarely, if ever.

 30

4 Bibliography

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur,

J. Howell, J. R. Lorch, M. Theimer and R. P. Wattenhofer. FARSITE:
Federated, available, and reliable storage for an incompletely trusted
environment. In Proceedings of the Symposium on Operating Systems
Design and Implementation, December 2002.

[2] D. Agrawal and A. El Abbadi. Integrating security with fault-tolerant

distributed databases. Computer Journal 33(1):71-78, 1990.

[3] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff and J. K.

Ousterhout. Measurements of a distributed file system. In Proceedings of
the ACM Symposium on Operating System Principles, October 1991.

[4] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz.

Harvest: A scalable, customizable, discovery and access system.
Technical Report CU-CS-732-94, Department of Computer Science,
University of Colorado, Boulder, 1994.

[5] C. Cachin, K. Kursawe, F. Petzold and V. Shoup. Secure and efficient

asynchronous broadcast protocols. In Advances in Cryptology – CRYPTO
2001, pages 524-541, 2001.

[6] J. Callan. Distributed information retrieval. In W. B. Croft, ed., Advances in

Information Retrieval. Kluwer Academic Publishers, pages 127-150, 2000.

[7] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive

recovery. ACM Transactions on Computer Systems 20(4):398-461,
November 2002.

[8] G. Chockler, D. Malkhi, and M. K. Reiter. Backoff protocols for distributed

mutual exclusion and ordering. In Proceedings of the 21st International
Conference on Distributed Computing Systems, pages 11–20, April 2001.

[9] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret

sharing in the presence of faults. In Proceedings of the IEEE Symposium
on Foundations of Computer Science, pages 335-344, 1985.

[10] I. Clarke, O. Sandberg, B. Wiley and T. W. Hong. Freenet: A distributed

anonymous information storage and retrieval system. In Designing Privacy
Enhancing Technologies: International Workshop on Design Issues in
Anonymity and Unobservability (Lecture Notes in Computer Science 2000),
December 2000.

 31

[11] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: from
simple message diffusion to Byzantine agreement. Information and
Computation 118(1):158-179, April 1995.

[12] C. Dwork, N. Lynch and L. Stockmeyer. Consensus in the presence of

partial synchrony. Journal of the ACM 35(2):288-323, April 1988.

[13] P. Feldman. A practical scheme for non-interactive verifiable secret

sharing. In Proceedings of the IEEE Symposium on Foundations of
Computer Science, pages 427-437, 1987.

[14] W. Ford and B. Kaliski. Server-assisted generation of a strong secret from

a password. In Proceedings of the 9th IEEE International Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises, June
2000.

[15] J. French, A. Powell, J. Callan, C. Viles, T. Emmitt, K. Prey, and Y. Mou.

Comparing the performance of database selection algorithms. In
Proceedings of the 22nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 238-245, 1999.

[16] S. Frolund, A. Merchant, Y. Saito, S. Spence and A. Veitch. FAB:

Enterprise storage systems on a shoestring. In Proceedings of Hot Topics
in Operating Systems, May 2003.

[17] J. A. Garay and K. J. Perry. A continuum of failure models for distributed

computing. In Proceedings of the International Workshop on Distributed
Algorithms, pages 153-165, 1992.

[18] L. Gong. Securely replicating authentication services. In Proceedings of

the International Conference on Distributed Computing Systems, pages 85-
91, 1989.

[19] M. P. Herlihy. Wait-free synchronization. ACM Transactions on

Programming Languages 13(1):124-149, 1991.

[20] M. P. Herlihy and J. D. Tygar. How to make replicated data secure. In

Advances in Cryptology – CRYPTO 1987, pages 279-391, 1987.

[21] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for

concurrent objects. ACM Transactions on Programming Languages and
Systems 12(3):463-492, July 1990.

[22] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M.

Satyanarayanan, R. N. Sidebotham and M. J. West. Scale and

 32

performance in a distributed file system. ACM Transactions on Computer
Systems 6(1):51-81, February 1988.

[23] P. Jayanti, T. D. Chandra and S. Toueg. Fault-tolerant wait-free shared

objects. Journal of the ACM 45(3):451-500, May 1998.

[24] K. P. Kihlstrom, L. E. Moser and P. M. Melliar-Smith. The SecureRing

group communication system. ACM Transactions on Information and
System Security 1(4):371-406, November 2001.

[25] S. T. Kirsch. Document retrieval over networks wherein ranking and

relevance scores are computed at the client for multiple database
documents. U. S. Patent 5,659,732, 1997.

[26] D. Klein. Foiling the cracker: A survey of, and improvement to, password

security. In Proceedings of the 2nd USENIX Security Workshop, August
1990.

[27] H. Krawczyk. Secret sharing made short. In Advances in Cryptology –

CRYPTO 93, pages 136-146, 1994.

[28] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaten, D. Geels, R.

Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: an architecture for global-scale persistent storage. In
Proceedings of the Conference on Architectural Support for Programming
Languages and Operating Systems, November 2000.

[29] L. Lamport, R. Shostak and M. Pease. The Byzantine generals problem.

ACM Transactions on Programming Languages and Systems 4(3):382-401,
July 1982.

[30] B. Lampson, M. Abadi, M. Burrows and E. Wobber. Authentication in

distributed systems: Theory and practice. ACM Transactions on Computer
Systems 10(4):265-310, November 1992.

[31] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed

Computing 11(4):203–213, 1998.

[32] D. Malkhi and M. K. Reiter. Secure and scalable replication in Phalanx. In

Proceedings of the IEEE Symposium on Reliable Distributed Systems,
October 1998.

[33] D. Malkhi, M. Reiter and A. Wool. The load and availability of Byzantine

quorum systems. SIAM Journal of Computing 29(6):1889-1906, April 2000.

 33

[34] U. Manber and S. Wu. GLIMPSE: A tool to search through entire file
systems. Technical Report 34, Department of Computer Science, The
University of Arizona, 1993.

[35] J.-P. Martin, L. Alvisi and M. Dahlin. Minimal byzantine storage. In

Proceedings of the International Symposium on Distributed Computing,
October 2002.

[36] R. Mukkamala. Storage efficient and secure replicated distributed

databases. IEEE Transactions on Knowledge and Data Engineering
6(2):337-341, 1994.

[37] R. Morris and K. Thompson. Password security: A case history.

Communications of the ACM 22(11):594-597, November 1979.

[38] B. D. Noble and M. Satyanarayanan. An emperical study of a highly

available file system. Technical Report CMU-CS-94-120, School of
Computer Science, Carnegie Mellon University, February 1994.

[39] A. G. Pennington, J. D. Strunk, J. L. Griffin, C. A. N. Soules, G. R. Goodson

and G. R. Ganger. Storage-based intrusion detection: watching storage
activity for suspicious behavior. In Proceedings of the USENIX Security
Symposium, August 2003.

[40] R. Perlman and C. Kaufman. Secure password-based protocol for

downloading a private key. In Proceedings of the 1999 ISOC Network and
Distributed System Security Symposium, February 1999.

[41] E. T. Pierce. Self-adjusting quorum systems for byzantine fault tolerance.

Technical Report CS-TR-01-07, Department of Computer Science,
University of Texas at Austin, March 2001.

[42] F. M. Pittelli and H. Garcia-Molina. Reliable scheduling in a TMR database

system. ACM Transactions on Computer Systems 7(1):25-60, February
1989.

[43] M. O. Rabin. Efficient dispersal of information for security, load balancing,

and fault tolerance. Journal of the ACM 36(2):335-348, April 1989.

[44] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A

scalable content-addressable network. In Proceedings of ACM SIGCOMM,
August 2001.

[45] M. K. Reiter. Secure agreement protocols: Reliable and atomic group

multicast in Rampart. In Proceedings of the 2nd ACM Conference on
Computer and Communication Security, pages 68–80, November 1994.

 34

[46] R. L. Rivest, A. Shamir and L. M. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM
27(2), February 1978.

[47] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location

and routing for large-scale peer-to-peer systems. In Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms,
pages 329-350, 2001.

[48] F. B. Schneider. Implementing fault-tolerant services using the state

machine approach: a tutorial. ACM Computing Surveys 22(4):299-319,
December 1990.

[49] A. Shamir. How to share a secret. Communications of the ACM

22(11):612-613, November 1979.

[50] S. K. Shrivastava, P. D. Ezhilchelvan, N. A. Speirs and A.Tully. Principal

features of the voltan family of reliable node architectures for distributed
systems. IEEE Transactions on Computers 41(5):542-549, May 1992.

[51] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan.

Chord: A scalable peer-to-peer lookup service for Internet applications. In
Proceedings of ACM SIGCOMM, August 2001.

[52] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules and G. R.

Ganger. Self-securing storage: protecting data in compromised systems.
In Proceedings of the Symposium on Operating Systems Design and
Implementation, October 2000.

[53] P. Thambidurai and Y. Park. Interactive consistency with multiple failure

modes. In Proceedings of the IEEE Symposium on Reliable Distributed
Systems, pages 93-100, October 1988.

[54] C. L. Viles and J. C. French. Dissemination of collection wide information in

a distributed information retrieval system. In Proceedings of the 18th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 12-20, 1995.

[55] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs. replication: a

quantitative approach. In Proceedings of the First International Workshop
on Peer-to-Peer Systems, March 2002.

[56] I. H. Witten, A. Moffet and T. C. Bell. Managing gigabytes: Compressing

and indexing documents and images. 2nd Edition, Morgan Kaufmann, 1999.

 35

[57] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliccote and P. K.
Khosla. Survivable information storage systems. IEEE Computer 33(8):61-
68, August 2000.

[58] Y. Zhao, J. D. Kubiatowicz and A. Joseph. Tapestry: An infrastructure for

fault-tolerant wide-area location and routing. Technical Report UCB/CSD-
01-1141, April 2000.

